Accueil » À la Une

Archives de catégorie : À la Une

Suivez-nous

LinkedIn
RSS

Évènements à venir

Restons en contact

Big data, machine learning et évaluation : 8. Conclusion

La data science au service des administrations

Gagnant du prix SEVAL 2021

8. Conclusion

Envie de lire plus de cas pratiques ? Consultez mon article sur l’analyse des sentiments (via Google Cloud).

8.1. Un retard d’adaptation

Les tentatives d’intégration de nouveaux modèles statistiques et de leurs applications informatiques dans le pilotage de projets, de programmes ou de politiques publiques ouvrent des voies prometteuses pour l’évaluation. La croissance exponentielle des données ainsi que la diffusion gratuite d’outils de développement accélèrent la recherche et les innovations dans le domaine. Si les organisations à but lucratif sont incitées à s’adapter, les acteurs associatifs et étatiques accusent un temps de retard et les évaluateurs peinent à innover dans leurs méthodes d’analyse.

Évaluation du Congrès SEVAL GREVAL 2020 : 3. Le machine learning au service de l’évaluation

3. Le machine learning au service de l’évaluation

Dans la partie précédente, nous avons présenté les résultats des données récoltées, i.e. les profils et les retours des répondants. Dans cette partie, nous utiliserons le machine learning (ou apprentissage automatique) pour automatiser l’analyse des commentaires.

Theory of change : penser le changement

Pourquoi penser le changement ?

Dans le cadre de l’évaluation d’une intervention, d’un programme ou d’une politique publique, il est usuel de construire, au terme de l’étude préparatoire, une description du fonctionnement de l’objet évalué. Cet effort d’explication peut avoir des objectifs variés dépendant de ce qui est attendu de l’évaluation. Il garde cependant une utilité fondamentale : réduire la complexité et permettre une compréhension aisée et rapide de la logique du programme. En d’autres termes, il s’agit de mettre en lumière comment et pourquoi les actions de l’organisation sont censées participer aux effets attendus. L’exercice bénéficie tant aux évaluateurs pour leur réflexion qu’aux gestionnaires du programme qui peuvent ainsi valider la compréhension de l’objet.